设为首页 加入收藏 联系我们
网站首页 公司简介 公司荣誉 产品中心 技术文章 新闻动态 人才招聘 联系我们
 
 
美国TISCH公司
 
英国Partech
 
德国stalker
 
美国ESC
 
美国 奥立龙Orion
 
活度计
 
Casella CEL
 
美国Gilian
 
便携式放射性测量设备
 
固定式放射性监测设备
 
辐射防护用品
 
环境空气质量监测(美国Met one)
 
环境质量监测(美国QUEST)
 
美国YSI水质分析仪
 
美国ISCO公司产品
 
美国HACH产品
 
美国雷曼水质分析仪
 
美国特纳水中油分析仪
 
德国WTW水质分析仪
 
意大利Hanna水质测定仪
 
元素分析类仪器
 
美国臭氧分析仪/甲醛检测仪
 
英国凯恩烟气分析仪
 
美国华瑞气体检测仪
 
美国英思科气体检测仪
 
英国ION离子气体检测仪
 
德国德尔格气体检测仪
 
美国霍尼韦尔气体检测仪
 
地下管线探测仪
 
医学物理
 
 
公司:上海纳优仪器仪表有限公司
联系人:高经理
手机:18019425599
电话:021-54339375
传真:全国统一免费服务热线:400-875-8998
地址:上海市闵行区春光路99弄26号504-505室
邮编:201108

您现在的位置:网站首页 > 技术文章>辐射化学
辐射化学
点击次数:965 发布时间:【2013-05-03】

辐射化学

辐射化学是研究电离辐射与物质相互作用时产生的化学效应的化学分支学科。电离辐射包括放射性核素衰变放出的αβγ射线,高能带电粒子电子、质子,氘核等和短波长的电磁辐射。由于裂变碎片和快中子能引起重要的化学效应,它们也可用作电离辐射源。
 电离辐射作用于物质,导致原子或分子的电离和激发,产生的离子和激发分子在化学上是不稳定的,会迅速转变为自由基和中性分子并引起复杂的化学变化。已知的辐射化学变化主要有辐射分解、辐射合成、辐射氧化还原、辐射聚合、辐射交联、辐射接枝、辐射降解以及辐射改性等。
 的形成和发展,促进了人们对化学基本规律的研究,从而建立了新的快速反应研究方法,使研究深入于微观反应领域;同时也促进了生物化学的研究,如测定酶的单电子氧化还原电位。模拟细胞膜上物质的还原过程等。
 学科的形成,与放射化学及原子能工业的发展紧密。研究始自贝克勒尔,1896年他发现铀化合物能发射穿透性辐射,能使照相底片感光变黑。居里夫妇发现元素镭后,对镭进行研究并分离出较多的镭,同时也进行了早期的研究。他们发现了镭盐能引起水的分解、玻璃仪器的变色等现象。
 由于有了较强的α辐射源,林德开始广泛研究了α射线对气体的作用。他发现在α射线的作用下,简单气体物可转变为气体混合物,碳氢化合物可转变成比母体化合物分子量大或小的碳氢化合物的混合物。1910年林德通过研究α射线在气体中产生的离子对数目和发生化学变化的分子数间的关系,首先用离子对产额定量表示气体中引起的效应。随着镭和γ射线用于医疗,弗里克建立了利用亚铁体系来测定X射线剂量的方法,这标志着研究进入定量阶段。
 1942年以后,原子能事业迅速发展,各种粒子加速器和反应堆相继建立,为研究提供了供各种目的使用的强大辐射源。另一方面原子能事业迅速发展又向家提出了许多亟待解决的问题,例如辐射损伤问题、耐辐照材料的研究及如何利用辐射能等。
 所有这些研究的积累,使得逐渐形成了一门完整的学科。20世纪60年代以来,脉冲技术的发展为研究短寿命中间产物的吸收或发射光谱和衰变动力学创造了条件,使我们能观察到在纳秒或更短的时间内所进行的过程。的基础理论进入了一个崭新的阶段。70年代,由于电子束装置每千瓦小时价格的降低和钻60辐照装置的优良设计和安全运转,又发展了一种新兴的产业辐射加工工艺。
 与光化学有密切的关系,这两门学科之间存在着许多的共同点,例如两者有类似的反应机理,的许多理论建立在光化学的研究基础上等。因此从某种意义上讲,可以把看作是光化学的延伸和分支。还和核化学、热原子化学及电子偶素化学、介子化学等紧密关联。
 反应与普通化学反应相比,具有一些比较明显的特点:由电离辐射引起的原初激发态、离子态常具有*的能量和活性,用光化学的方法一般难于产生;在射线通过介质产生的径迹周围,活性粒种形成一种特殊的分布,一组组紧挨在一起的激发分子和离子的群团不均匀地分布于空间;电离辐射与介质相互作用时,介质吸收能量是无选择性的,而光子只有在光量子值等于介质分子或原子中某一定能级差时,才能被吸收而引起原子和分子的跃迁。
 电离辐射可在低温下使物质产生活性粒种,而这些活性粒种在通常化学反应中常需在高温条件下产生。因此,利用反应常可在低温、常温下进行工业生产,避免易爆的高压高温反应。
 的研究领域可细分为气体、水和水溶液、有机物、固体、剂量学、有机化合物的辐射合成、高分子和辐射加工工艺学。
 目前,发展的趋势大致分为三个方面:
 加强的基础研究,特别是对短寿命中间产物的研究。这方面的研究在于探索辐解产物的形成过程及其规律并发展为基础化学的一部分,后者尤为其他化学家所重视,例如溶剂化电子不仅为的研究对象,在光化学、电化学中也必须加以考虑。使用的方法可以获得较其他方法更纯的正负离子。70年代以来,由于实验技术的突飞猛进,如脉冲辐解技术和快速响应技术,以及低温技术在中的应用,短寿命中间产物的研究获得迅速的发展。
 近40%的研究与生物学有关,研究的对象从糖到酶,几乎涉及整个生物物质领域。由于放射生物学的研究达到放射分子生物学水平,必然要求与其相结合,而的基础研究如辐射敏化和保护的研究,直接与阐明辐射损伤机理、肿瘤放射治疗有关。此外,脉冲辐解和y辐解是研究生物化学过程的一种新方法。出现了一些有希望的研究课题,如辐射引起的生命物质合成、模拟细胞膜的胶束分界面,辐射水溶液化学和化学与辐射相结合的生物效应。
 加速应用的研究,其中高分子仍为主要方向,又开辟了一些新的应用研究领域,如辐射在食品保藏、环境保护、生物医学工程中的应用,辐射能的化学储存和辐射在考古学中的应用等。

首页| 关于我们 | 联系方式 | 在线留言| 人才招聘

上海纳优仪器仪表有限公司版权所有 管理登陆 ICP备案号:沪ICP备12030661号-2 document.writeln("")